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Abstract: Digital twin (DT) technology has been used in a wide range of applications, including
electric vehicles. The DT platform provides a virtual representation or advanced simulation of
a physical object in real-time. The implementation of DT on various aspects of EVs has recently
transpired in different research studies. Generally, DT can emulate the actual vehicle on the road
to predict/optimize its performance and improve vehicle safety. Additionally, DT can be used for
the optimization of manufacturing processes, real-time condition monitoring (at all levels and in all
powertrain components), energy management optimization, repurposing of the components, and
even recycling processes. This paper presents an overview of different DT platforms that can be
used in EV applications. A deductive comparison between model-based and data-driven DT was
performed. EV main systems have been discussed regarding the usable DT platform. DT platforms
used in the EV industry were addressed. Finally, the review showed the superiority of data-driven
DTs over model-based DTs due to their ability to handle systems with high complexity.
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1. Introduction

In recent decades, digital manufacturing has contributed significantly to all industries.
The remarkable advances in communication and information technology have gone a long
way towards the development of manufacturing [1]. Computer-aided technologies such
as computer-aided design (CAD), computer-aided engineering (CAE), computer-aided
manufacturing (CAM), finite element analysis (FEA), product data management (PDM),
etc., are developing rapidly and play a crucial role in modern industry [2].

Manufacturing, healthcare, and smart city environments have become more able
to harness data through advanced analytics and the Internet of Things (IoT) connectiv-
ity [3]. In conjunction with data analytics, IoT environments can be used for predictive
maintenance, fault detection, and design optimization processes [4]. When it comes to
describing, finding, and accessing resources, DTs and IoT overlap. DT and IoT standards
have been developed by many organizations with various backgrounds and perspectives
to address these overlapping aspects. IoT and DT both focus on resources [5]. Resources
are internet-connected objects that can communicate with consumers either directly or
indirectly through some sort of software system in the context of the IoT. Resources are
defined more broadly in the context of DT, including assets, devices, and actual or vir-
tual entities. Both share the concept that most resource-to-resource communication, or
machine-to-machine (M2M) communication, should occur without the involvement of
humans. With the advancements in DT technology, the gap between IoT and data analytics
can be bridged by creating connected physical and virtual models [6]. This has allowed
DT technology to be applied in many different sectors and disciplines such as smart cities,
construction, healthcare, ocean, automobile, aerospace, manufacturing, utilities, etc. [7].
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1.1. Background

After Challenge Advisory hosted Michael Grieves’ presentation on technology at the
University of Michigan in 2002, the concept of the DT gained wider recognition [8]. During
this presentation, the focus was on the development of a lifecycle management center for
products. The presentation covered all the key details associated with DT technology, such
as the physical and digital environment, as well as the transfer of appropriate information
and data between the physical and digital worlds. The DT concept has been practiced
since the 1960s by NASA during the space programming period. They created physically
duplicated systems at ground level to match the systems in space [9].

The term DT refers to the digital representation of a physical object, process, or service
that supports decision-making throughout its lifecycle. It is updated from real-time data
and uses simulation, machine learning, and reasoning [10]. With improved data accessibility
and connection and the changing end-user needs, the idea of DT can be considered a logical
extension of conventional simulations [1]. It is a computer program that simulates how
products and processes will perform using real-world data. Software analytics, artificial
intelligence, and the Internet of Things can be integrated into these programs to enhance
the output. Three basic pillars make up the DT, which are the physical entity, the virtual
entity, and the data exchange and communication system between them [11]. Creating a
DT for a system is a multiphase process comprises of modeling, validation, training, and
deployment [12].

Recent works have defined DT technology as a five-dimensional structure with sepa-
rate entities for services and connections [8]. Creating a DT can enhance technology trends,
prevent costly failures in physical objects, and improve test processes by using advanced
analytics, monitoring, and predictive capabilities. Figure 1 shows the main structure of DT.
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1.2. Digital Twin in EV Industry

Historically, automotive and aerospace systems have been developed using empirical
engineering practices [13], but now with growing performance requirements, the necessity
for “self-awareness” during operation, and the necessity for a lack of external assistance,
new engineering procedures are required. With the emergence of DT, new testing and
development modeling techniques have become available to fulfil new requirements. As
a result, research interest in these technologies had also increased steadily, as illustrated
in Figure 2.



Sensors 2023, 23, 1414 3 of 15

Sensors 2023, 23, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 2. Search results for publications related to DT in automotive applications during the period 

2011–2022 in ScienceDirect and Scopus. 

The EV industry is gaining increased attention nowadays. The rising demand for EVs 

is because they not only eliminate exhaust emissions and contribute to the transportation 

sectors (23% of global CO2 emissions), but because they also provide critical grid flexibil-

ity as a transition to a greater share of renewable energy (RE) supply. Despite this solid 

strategy, EVs accounted for only 7.2% of global car sales in 2021. Pricing and battery ca-

pacity pose major challenges to the introduction of EVs on the road. To address these 

challenges, one way is to optimize the electrical energy consumption of the vehicle and 

design a supporting architecture to facilitate it. As the 4th industrial revolution presses 

on, EV manufacturers are adopting even more technology to make their production oper-

ations proceed and make them more cost-effective. Advanced machine learning tools and 

optimization algorithms have contributed highly to the EV development process [13]. The 

IoT, along with DT, act as the required architecture for mapping offline physical assets to 

digital models. Since EVs generate significant amounts of sensory data, the DT technology 

is far superior to other technologies such as hardware-in-the-loop (HIL) simulations. 

Smart system monitoring, predictive events, fault detection, remaining useful lifespan, 

and many other benefits can be achieved through this conversion. Despite the many ad-

vantages that DT offers to the technology of manufacturing and developing EVs, master-

ing this application is still in the early stages. EVs comprise a mixture of electrical and 

mechanical systems that range in complexity. One of the main problems facing research-

ers in this regard lies in choosing an appropriate development environment (platform) to 

create a DT of an EV system. 

This paper presents a comprehensive overview of different platforms used to de-

velop DTs for EV applications. The general objective of this study is to provide a reference 

for researchers on this topic. The paper is organized as follows: A systematic understand-

ing of the inception and evolution of DT technology and its implementation in automotive 

applications is offered in Section 1. Section 2 highlights and compares the two main cate-

gories of DTs. In Section 3, the study investigates DT platforms for potential contributions 

to EV technologies and considers current barriers to their realization. Section 4 addresses 

the research findings for innovation in this field. Finally, Section 5 concludes the main 

findings and presents recommendations for future work. 

2. DT Architecture Categorizations 

The DT architecture can be divided into two main categories as the following subsec-

tions illustrate. 

  

0

100

200

300

400

500

600

700

2016 2017 2018 2019 2020 2021 2022

N
u

m
b

er
 o

f 
p

u
b

li
ca

ti
o

n
s

Publiation year
IEEE Xplore Scopus ScienceDirect

Figure 2. Search results for publications related to DT in automotive applications during the period
2011–2022 in ScienceDirect and Scopus.

The EV industry is gaining increased attention nowadays. The rising demand for EVs
is because they not only eliminate exhaust emissions and contribute to the transportation
sectors (23% of global CO2 emissions), but because they also provide critical grid flexibility
as a transition to a greater share of renewable energy (RE) supply. Despite this solid strategy,
EVs accounted for only 7.2% of global car sales in 2021. Pricing and battery capacity pose
major challenges to the introduction of EVs on the road. To address these challenges, one
way is to optimize the electrical energy consumption of the vehicle and design a supporting
architecture to facilitate it. As the 4th industrial revolution presses on, EV manufacturers
are adopting even more technology to make their production operations proceed and make
them more cost-effective. Advanced machine learning tools and optimization algorithms
have contributed highly to the EV development process [13]. The IoT, along with DT, act as
the required architecture for mapping offline physical assets to digital models. Since EVs
generate significant amounts of sensory data, the DT technology is far superior to other
technologies such as hardware-in-the-loop (HIL) simulations. Smart system monitoring,
predictive events, fault detection, remaining useful lifespan, and many other benefits can
be achieved through this conversion. Despite the many advantages that DT offers to the
technology of manufacturing and developing EVs, mastering this application is still in the
early stages. EVs comprise a mixture of electrical and mechanical systems that range in
complexity. One of the main problems facing researchers in this regard lies in choosing an
appropriate development environment (platform) to create a DT of an EV system.

This paper presents a comprehensive overview of different platforms used to develop
DTs for EV applications. The general objective of this study is to provide a reference for
researchers on this topic. The paper is organized as follows: A systematic understanding of
the inception and evolution of DT technology and its implementation in automotive appli-
cations is offered in Section 1. Section 2 highlights and compares the two main categories
of DTs. In Section 3, the study investigates DT platforms for potential contributions to EV
technologies and considers current barriers to their realization. Section 4 addresses the
research findings for innovation in this field. Finally, Section 5 concludes the main findings
and presents recommendations for future work.

2. DT Architecture Categorizations

The DT architecture can be divided into two main categories as the following subsec-
tions illustrate.
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2.1. Model-Based DT

The concept of a model-based simulation approach (MBS) refers to a formalized
methodology for preparing requirements and designing, analyzing, and verifying complex
systems [14]. MBS places models at the center of the system design. Physical systems,
whether in nature, on the testbench, or in applications, consist of interconnected and in-
teracting objects or components performing a task or a variety of functions. Simulating a
physical system using MBS implies that the mechanism inside the system is being stud-
ied using fundamental physical laws and principles of engineering. The power of MBS
relies on a deep understanding of the system or process and can benefit from scientifically
established relationships. Model-based DT is an advanced form of MBS with increased
sensory data and AI supplementary tools. The following literature illustrates some ex-
amples of model-based DTs and the used platforms for creation in different applications.
Madni et al. [15] implemented DT technology in a model-based system of a vehicle using a
planar mechanics open-source library. Bachelor et al. [16] proposed a case study of a model-
based DT of an ice protection system for a regional aircraft using Dassault Systems’ Dymola
platform. Magnanini and Tullio [17] proposed an analytical model-based DT of a railway
axles manufacturing system for a performance evaluation based on Markovian system
representation. Zheng and Sivabalan [18] used a Windows Presentation Foundation (WPF)
application and .Net framework 4.5 in Visual Studio to develop a DT for a cyber-physical
system (CPS) of a 3D printer based on a tri-model-based approach for product-level devel-
opment. Ward et al. [19] proposed a model-based machining DT system for a case study
of a large-scale CNC machine tool using a MATLAB/Simulink platform. Yang et al. [20]
developed a model-based DT of an aero-engine disk for online detection of disk unbalance
and crack failure using an ANSYS simulation platform. Woitsch et al. [21] proposed a
meta-model of a model-based DT environment to bridge the between the manufacturing
and the use of products and services based on an ADOxx meta-modeling platform.

From the above, it is clear that the creation of a model-based DT of a system is closely
related to modellable physical systems and mostly depends on conventional modeling
and simulation platforms, in addition to some artificial intelligence techniques and IoT
tools. Although model-based DTs are widely used in different applications, some obstacles
undermine their use, especially with high-complexity systems. The major drawback of
model-based DT is that models cannot handle infinite complexity and typically need to be
simplified. Moreover, it has difficulty considering unknown variables and noisy data.

2.2. Data Driven DT

The adoption of DTs enables operators to monitor production, test deviations in an
isolated virtual environment, and strengthen the security of process industries [6]. With
the substantial increase in process data, conventional model-based methods are unable to
describe complex systems’ state space. In this way, data-driven modeling technology has
become a potential solution for modeling DTs. The data-driven modeling concept is based
on analyzing data about a system to find connections between variables (input, internal,
and output variables) without explicitly knowing its physical behavior. As compared to
conventional empirical models, these methods represent a significant advance in a wide
range of applications. Data-driven modeling relies on substantial and sufficient data to
describe the underlying system. Data are used to perform tasks such as classification,
pattern recognition, associative analysis, and predictive analytics. The literature shows
excessive use of data-driven DT in different applications especially systems with high
complexity as will be described in the following. Wang et al. [22] developed a data-driven
DT framework for a three-domain mobility system of human, vehicles, and traffic based
on an Amazon web services (AWS) platform. Gao et al. [23] used a MATLAB/Simulink
platform to build an anomaly detection framework for monitoring anomalous behaviors in
a data-driven DT-based cyber-physical system. Coraddu et al. [24] developed a data-driven
DT of a ship for speed loss and marine fouling estimation based on a large number of
onboard sensors using the IBM Engineering Lifecycle Management (IBM-ELM) platform.
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Merghani et al. [25] proposed a data-driven DT of a proton exchange membrane fuel cell
(PEMFC) for system health monitoring and lifetime prediction. Mykoniatis and Harris [26]
implemented a data-driven DT of an automated mechatronic modular production system
for condition monitoring, design decisions, testing, and validating the actual system behav-
ior using the Any Logic Simulation platform. Blume et al. [27] developed a data-driven DT
of a cooling tower for improving system understanding and performance prediction using
the software tools KNIME and Microsoft Excel. Kim et al. [28] developed a data-driven
DT of an onload tap charger (OLTC) for health monitoring and fault detection based on a
numerical algorithm of subspace state-space system identification (N4SID). Major et al. [29]
developed a java-based data-driven 3D graphical DT platform for smart cities applications.
They also supported their study with a real study case of a smart city in Norway.

From the foregoing, it is obvious that there is a direct connection between the data-
driven DT and the complex systems that contain a huge amount of data. It is also noted
that the platforms used for data-driven DT creation are often artificial intelligence and Big
Data tools. Table 1 summarizes the comparison between data-driven and model-based DTs.

Table 1. Comparison between model-based and data-driven DTs from different perspectives.

Comparison Model-Based DT Data-Driven DT

Basis Mathematical equations of physical
lows (Model Simulation)

Sensory data of system’s inputs
and outputs (grayor black box)

Cost More expensive Less expensive
Time of creation Shorter Longer

Applications Modellable physical systems Cyber-physical systems,
complex systems

3. DT Platforms for EV Applications

EVs are also referred to as battery electric vehicles (BEV), as they use a battery pack to
store the electrical energy that powers the electric motor. EV main domains are divided into
two categories as follows: a smart vehicle system and a vehicle propulsion drive system.

3.1. Smart Vehicle System

Emerging technologies in the field of smart vehicle systems have promoted the con-
tinuous development of sustainable transport. To increase energy efficiency and reduce
CO2 emissions, smart electric vehicles have been deployed to achieve decarbonization
challenges. The smart vehicle system includes advanced driver assistance systems and
vehicle health management systems. Bhatti et al. [30] conducted research to provide a
comprehensive analysis of DT for smart electric vehicle applications, which highlighted
the implementation of DT platforms for health monitoring systems based on integrated
vehicle health management (IVHM).

Sanabria et al. [31] developed a DT of an electric passenger bus to emulate the vehicle’s
performance. They provided predictive maintenance models to determine the remaining
useful life of the vehicle components. They used the MATLAB/Simulink platform deployed
on an NVIDIA processor through Compute Unified Architecture (CUDA).

Ezhilarasu et al. [32] discussed the prospective role of DT in an integrated vehicle
health management system (IVHMS) to support condition-based maintenance (CBM) by
monitoring, diagnosing, and prognosing the vehicle health.

Advanced driver assistance systems are also a point of interest not only for increasing
energy savings but also for achieving a more comfortable driving experience. Sun et al. [33]
used MATLAB Simulink and Carsim to deploy machine learning algorithms and developed
a more accurate and precise groundwork for training and testing smart vehicle DTs.

Wang et al. [34] developed a DT of an advanced driver assistance system for a con-
nected and automated vehicle (CAV) by leveraging the Unity game engine as a physical
system emulator. They built the DT virtual model using e Unity scripting API combined
with external tools (e.g., SUMO, MATLAB, Python, and/or AWS) to enhance the simulation
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functionalities. To provide reliable and safe online monitoring for autonomous guided
vehicles (AGVs), El Sisi et al. [35] integrated an IoT architecture to address the issue of
cyber-attacks based on a deep neural network (DNN) with a rectified linear unit.

Lui et al. [36] proposed two approaches based on a Gaussian process (GP) and a deep
convolutional neural network (DCNN) for DT model development of a heavy vehicle for
optimization of vehicle driving states.

The advantages of DT technologies integrate autonomous navigation performance;
however, critical decision-making must be considered to enable the modelling of large
vehicle data. Bottani et al. [37] developed a DT for preparing the AGV control system using
discrete event simulation software (DES) based on the Arduino and C++ interpreter.

The ability to introduce several scenarios for critical decision-making provides a more
accurate model through the application of stochastic factors using a DT platform; therefore,
physical assessment is also required. Guerra et al. [38] proposed the optimization of a DT
for modeling the behavior of ultraprecision motion systems with backlash and friction.
The implementation of the complete algorithm and simulation was performed using MAT-
LAB/Simulink, concluding that the cross-entropy method required a remarkably shorter
time compared to other optimization approaches; hence, further studies are necessary to
analyze the influence of different optimization methods.

3.2. EV Propulsion Drive System

The EV powertrain is the main system that defines a vehicle as an EV. It is a combina-
tion of electrical and mechanical components. Figure 3 shows different components of an
EV propulsion drive system.
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Despite the multiple components in the electric propulsion system, most research
efforts in EV digital twin technology are focused on three specific components: the battery,
the electric motor, and the traction inverter/controller.

3.2.1. EV Battery System

Digital twin applications for a battery energy storage system (BESS) is an important
topic that contributes to sustainability and climate change mitigation, not only by reducing
CO2 emissions but also by implementing green strategies towards clean energy sources.

The battery management system (BMS) is defined as the core element of a battery that
monitors, protects, and ensures reliability, safety, and efficiency [39]. It is fundamental to
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point out that some indicators play a fundamental role in the successful BESS implementa-
tion, such as the state of charge (SOC), state of health (SOH), depth of charge (DOC), and
depth of discharge (DOD).

Several scientific studies have been conducted to determine the major relevant applica-
tions of DTs for battery systems. In 2020, Wu et al. [40] used Python Battery Mathematical
Modelling (PyBaMM) and MATLAB to propose the introduction of hybrid models, defined
as models that combine physics-based models and data-driven approaches. Wu et al. also
mention opportunity areas in the fields of (1) standardized and transparent data, (2) a
combination of machine learning and artificial intelligence algorithms, and (3) development
of new methodologies to assess lifetime assessment of battery systems [41].

Concerning health and charge indicators, a cloud BMS was implemented by using
software programs in Python, in which cloud computing was used to improve computa-
tional power data as well as storage capacity. The research contribution proposed by Li
et al. is explained in the following points [42]:

• SOC and SOH estimations to validate particle swarm optimization: In this case, aging
tests were carried out for both software and hardware. Additionally, a battery test for
lead-acid and lithium-ion batteries was performed to validate the results of SOC and
SOH estimations;

• Battery Modeling: Implementation of the equivalent circuit model (ECM) was exe-
cuted with additional modifications to the battery dynamics, taking into considera-
tion the particle swarm optimization (PSO) and the adaptative extended H-infinity
filter (AEHF);

• Cloud BMS: A DT was built to improve the computation power, data storage capability
of a BMS, and reliability, all this considering the concept of IoT and cloud computing.

Future research that identifies the efforts to implement a BESS for DT was also pro-
posed by Singh et al. in 2021, highlighting software packages in Python and MATLAB. The
most important benefits of the DT and the integrated BMS in the scientific study conducted
by Singh et al. were the following [39]: (1) evaluation of the battery performance, (2) aging
indicators to predict the remaining useful lifetime (RUL), (3) optimal assessment of the
SOC, (4) thermal management, and (5) fault diagnostics.

Selection of an optimal algorithm before building the DT is a challenging task to
accomplish, all due to the specifications of battery packs, input data, operating conditions,
and manufacturing requirements that a BESS must fulfil. Sancarlos et al. [43] developed
a regression model based on sparse-proper generalized decomposition (s-PGD) that was
incorporated into a DT, allowing for not only real-time simulation but also to achieve battery
evaluation and early prediction (BEEP). It is important to mention that a data-driven model
was also implemented to provide more optimal accuracy that corrects the results between
the prediction and measurements. Finally, it was summarized that improvements to the
DT model can be incorporated by considering not only thermal gradient but also aging
effects as a future line of research. Results and validation models were compared using
lithium-ion simulation battery toolbox (LIONSIMBA) in MATLAB.

Regarding the analysis of degradation mechanisms in BESS, points of interest are
sustained in the aging and RUL of the system. Operating temperatures are the major
indicator of heat generation in the battery pack. Soleymani et al. [44] generated a semi-
analytical DT model to capture thermal behavior in a real-time environment. The proposed
model was used to accelerate the battery pack design and development through the
evaluation of several operating conditions such as charge and discharge profiles, initial
SOC, coolant flow rate, and temperature. Results of the research were illustrated in ANSYS
and provide an optimization for reliability, comfort, and safety in battery pack thermal
systems, which results in a significant reduction in time-to-market.

To conclude with this section, it is necessary to point out that the major requirements of
the DT implementation in a BESS are based on a solid understanding of the physical system,
selection of the most optimal model based on input data and manufacturing requirements,
execution of the data-driven approach according to the key performance indicators (KPIs),
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and finally, assessing the fault diagnostics and predictive maintenance by testing processes
and BMS specifications.

The continuous advance in the IoT has encouraged the development of new software
platforms for battery data storage; all this ensures easy access by the creation of learning
models that guide the product design and optimization processes. In [45], battery data
storage platforms simplify the prediction of the RUL, which supports not only the design
usage history, but also the behavioral integration in consequent life cycle phases. It is
important to mention that the big data platforms must fulfil the performance of integration,
storage, interactive analysis, visualization, and security, all to assure the implementation
of advanced technological tools, such as sensor data, model generation data, multiple
structures, real fusion, and virtual data.

Execution and deployment of software platforms for implementing the DT of a BESS
is a fundamental step that can be summarized in the next points [39]:

• Use of experimental inputs to determine parameter identification.
• Implementation of the state estimation algorithm.
• Integration of a battery modeling that considers the design and manufacturing data.
• Execution of the parameter-update estimation that can be coded in several tools, such

as MATLAB, Python, Linux, etc.

The variety in existing libraries and open-source battery modeling based on software
packages is the most crucial step for results delivery. Although the selection of the software
package depends on the sector, it has been proven by scientific studies that MATLAB,
COMSOL, Dualfoil, and fast DFN have improved the performance and functionalities of
the models, not only in the academic field but also for industrial purposes.

Considering the parameter estimation, the PyBaMM platform is considered a powerful
tool to facilitate computational complexity by solving standard electrochemical battery
models [46]. The feasibility of PyBaMM execution and its main contributions relies on
the following advantages and customized attributes [39]: (1) boundary conditions in the
initialization of the algorithm, (2) governing equations based on electrochemical models,
(3) initial conditions, (4) output variables of the model that represent the internal state of
the battery, and (5) customized attributes that illustrate the physical meaning of the system
(termination events, battery region, geometry, and computation solver).

Special DT platforms have also been implemented to assess the performance degrada-
tion of lithium-ion batteries. Peng et al. [47] developed a low-cost DT based on LabView
2018 using an equivalent circuit model (ECM) to realize a pack degradation assessment
of lithium-ion battery packs. Among their main contributions was a DT platform to test
different battery types and load algorithms for SOC estimation. Their results indicated
that their platform provides accurate new solutions for battery degradation in real-time;
however, compatibility with different algorithms and incorporation of new features, such
as virtual reality and augmented reality, are opportune areas for further improvement.

In terms of challenges regarding data and sensing of standardized collection methods,
numerous efforts have been proposed to achieve suitable data structures and effective
data-driven approaches. One remarkable effort was developed by Herring et al. [48], a
scientific study in which a BEEP Python library was implemented, enabling cell-testing
and machine-learning applications.

3.2.2. EV Electric Motor

The electric motor is considered the core element of an EV. It is responsible for con-
verting electric energy from the battery into kinetic energy that moves the vehicles’ wheels.
It functions in part as an electric generator, converting kinetic energy created when the
vehicle is in neutral (for example, when it is descending a slope) into electric energy that is
stored in the battery. When the car decelerates, the same energy-saving concept is used,
resulting in a “regenerative braking system“. The main challenges of EV motors concern
their design and control [49]. The main goal is achieving maximum efficiency of the motor,
which means higher driving range and longer battery life [50]. The advancement in DT
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technology has coped with many problems of motor design and control. DT technology
provides many advantages for EV motors, from design optimization to prognosis and
determining the life span of different parts. In the meantime, DT technology facilitated
motor control algorithm development. The control strategy can be implemented and tested
through the motor DT without the need for a real physical model, which saves a lot of
time and power consumption needed for testbench development. Many platforms for
electric machine design and control support DT creation and deployment as shown in
the literature.

Venkatesan et al. [51] proposed an intelligent DT model of an EV PMSM for health
monitoring and prognosis. The MATLAB/Simulink platform supported with an arti-
ficial neural network (ANN) and Fuzzy logic tools were used to build the motor DT.
Rassolkin et al. [52] used MATLAB/Simulink and Unity 3D platforms to build a DT of
an induction motor for condition monitoring. Goraj [53] used Siemens’ product lifecycle
management (PLM) platform to build a DT of an airplane electric motor for lifetime fa-
tigue prediction analysis. Proksh et al. [54] developed an empirical-based DT model of
an induction motor using MATLAB/Simulink to monitor the bearing voltage and electric
breakthroughs. Jitong et al. [55] used 3D MAX and Unity 3D platforms to build a DT of a
three-phase induction motor for condition monitoring of motor equipment. Ruba et al. [56]
presented a DT for an EV propulsion system based on energetic macroscopic representation
(EMR) using the LabVIEW platform. Abbate et al. [57] developed a DT approach for an
industrial electric motor to evaluate its behavior based on vibration data for maintenance
purposes using the Arena simulation platform. Bouzid et al. [58] proposed a real-time DT
of a wound rotor induction motor for condition monitoring based on FEM of the motor
using RT-LAB in the MATLAB/Simulink environment. Ibrahim et al. [59] proposed a DT
of an EV-PMSM based on the motor analytical model to act as a virtual torque sensor. They
used the MATLAB/Simulink platform combined with the Robot Operating System (ROS)
to build the motor DT.

3.2.3. Traction Inverter

Power electronics interfaces are a key element in enabling the transition from conven-
tional internal combustion engine vehicles (ICV) to EVs [60]. Traction inverter technology
has recently advanced, making it a particularly promising field for expansion. The traction
inverter controls how much energy is transferred from the high-voltage battery system to
the motor, which turns the wheels and moves the vehicle. Inverters contain motor control
units (MCU), which are usually integrated parts. The EV motor’s control algorithm is
implemented by the MCU. As soon as it receives comments from the vehicle control unit
(VCU) via CAN-bus communication, it configures motor speed and torque, which are then
converted by the inverter into power signals. An inverter is considered the brain of the
EV as it is the main link between stationary and kinetic elements. Insulated gate bipolar
transistors (IGBT) have been the base element of EV inverters since 1980. Field-effect
transistors (FETs) with simple gate-drive and bipolar transistors (BJTs) with high current
and low conduction loss were merged to create IGBT. With low on-state conduction losses,
as well as a strictly controlled switching rate, IGBTs can block high voltages. Despite their
fast-switching capabilities, they suffer from low on-state conduction losses. As a result,
they require a larger thermal management system which has a negative impact on the
power conversion system efficiency.

Power transistors made of silicon carbide (SiC) and gallium nitride (GaN) have recently
gained popularity as IGBT substitutes. [61]. By switching at higher frequencies (100 kHz
or more as opposed to 20 kHz), SiC devices can increase efficiency while minimizing the
size and cost of any inductors or transformers [62]. GaN transistors have been used in a
range of switch-mode power supply applications, including DC/DC converters, inverters,
and battery chargers because of their ability to tolerate high voltages (up to 1000 V), high
temperatures, and fast switching [63]. The main drawback of such a technology is that it is
still high costs.
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The advancement in DT technology for EV inverters has had a significant effect. Health
monitoring, fault diagnosis, performance optimization, and lifetime estimation of semicon-
ductors are the main prospective functions of DT for EV inverters as the literature shows.
Milton et al. [64] proposed a DT of a power converter running on a field programmable
gate array (FPGA) for online diagnostic analysis using the MATLAB platform. Wunder-
lich and Santi [65] developed a data-driven DT model of a power electronic converter
based on a dynamic neural network for condition monitoring using the MATLAB platform.
Liu et al. [66] proposed a model-based DT of a power electronic converter for condition
monitoring using the MATLAB/Simulink platform. Wu et al. [67] proposed a DT approach
for a single-phase inverter for degradation parameters identification using the MATLAB
platform. Shi et al. [68] proposed a DT method for IGBT parameter identification of a
three-phase DC/AC inverter for circuit condition motoring based on a particle swarm
optimization algorithm using the MATLAB/ Simulink platform. Liu et al. [69] developed
and experimentally validated a DT of an automotive traction drive system. The proposed
DT combined an FEM-based PMSM model with a SiC inverter circuit simulation using the
MATLAB /Simulink platform.

3.3. DT Platforms from EV Industry

Many producers of EVs and their co-systems are using the DT platform for research
and development purposes. Some EV manufacturers have established their own DT
platforms, while others are in collaboration with global platform developers [70–73]. Table 2
provides an adequate review of some DT platforms used by EV manufacturers.

Table 2. Some DT platforms of EV manufacturers and their functions.

Manufacturer DT Platform Origin Function

BMW Nvidia
Omniverse Nvidia

Predictive maintenance, Virtual
factory planning,

Condition monitoring

General
Electric Smart Signal General Electric Condition monitoring, Fault

detection, Diagnosis, Forecasting

Hyundai Azure Microsoft
Predicting EV battery lifespan,

optimizing battery management
and performance

Kia NX software Siemens Design optimization,
Predictive maintenance

Siemens Siemens
Xcelerator Siemens Testing simulations and calculations

on digital versions

Bosch Bosch IoT Suite Bosch Condition Monitoring,
Product testing

Mitsubishi MELSOFT Gemini Mitsubishi Visualization, Design optimization,
Predictive maintenance

Skoda Auto Matterport DT Matterport Condition monitoring

4. Discussion

The first key step of creating a DT for a system is modeling. It is necessary to choose
between the two main DT modeling architectures: data-driven and model-based. The
selection relies on several factors, including the function performed by the DT, the system
parameter availability, and the simplicity or the complexity of the system. The next step of
the DT development process is to choose the right development environment (platform).

From the perspective of EV applications, EV vehicles were divided into two main
domains: the smart vehicle system and the vehicle propulsion drive system. Creating a DT
of a smart vehicle system is more achievable based on data-driven techniques. Whilst for
EV propulsion systems, a mixture of data-driven, model-based, or hybrid DT architectures
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have been applied. For battery storage systems, including battery health management
systems, data-driven DTs showed more reliability and flexibility; however, some researchers
used a hybrid architecture to model the system. In contrast, electric motors and traction
inverters can be modeled in diverse ways such as by finite element (FEM), analytical, and
numerical models; thus, they were modeled more by model-based DTs.

The use of platforms such as MATLAB/Simulink, Ansys, LabView, Unity 3D, and
other modeling platforms has been effective in creating model-based DTs. While in the case
of data-driven DTs, more reliance has been on cloud-based platforms such as Microsoft
Azure, AWS, IBM-ELM, or special purposes platforms built by the DT developers based
on one of the software development environments, such as Python, C++, R, and others.
Figure 4 represents an illustrative figure summarizing the results of this review of DT
architectures for different EV systems.
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5. Conclusions

Recently, DTs have become an emerging paradigm for virtual representations of
complex systems along with their underlying components.

DTs are composed of three main parts: physical objects, virtual representations, and
the communications between them. The virtual part of DT must be developed through a
specific environment called the DT platform.

Model-based and data-driven are the main categories of DTs. A comparison between
the two categories clarified their strengths and weaknesses as well as the prospective
applications for both.

This review dealt specifically with DTs for EV applications. EV systems were divided
into smart vehicle systems and vehicle propulsion drive systems. The literature addressed
the advantages of using data-driven DTs with smart vehicle systems due to the complexity
of modeling such systems and also the significant amount of data concerned with it. While
in the case of the electric propulsion drive system, there was mixture between the use
of model-based DT, data driven DT, or a combination of them both, depending on the
component to be modeled and the DT’s function.

This paper represents a reference for researchers on the topic of DT for EV applications
in order to determine the appropriate DT platform according to the work requirements.
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For researchers, many platforms may be used to create DTs for different EV systems,
but the reality in industry may differ slightly. Most EV manufacturers rely on their unique
platforms for research and development purposes. The main issue with such platforms
is that they are not open source, which deepens the gap between academic research and
industrial development.
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